
A tutorial for versioning archaeological data
using Kart

Andrea Titolo Alessio Palmisano

1 Foreword

The following tutorial have been successfully reproduced on macOS 12 and 13 (Monterey and
Ventura), and Pop! OS 22.04 (Ubuntu-based).

Please see the requirements below (Section 1.1) and the useful links (Section 5) for external
resources or tutorials.

Tip

When using text in CAPITAL_LETTERS inside a code block/line, it usually means that
you need to replace those with your own variables. For example, for a code like mkdir
YOUR_FOLDER_NAME, if you want your folder to be called kart_example, you will need to
write mkdir kart_example.

During the Getting Started (Section 2) and Getting Started with Kart (Section 3) sections,
the examples will provide mostly terminal commands, since it will be impossible to provide in-
structions for all the existing graphical file managers (e.g. Finder, Windows Explorer, Dolphin,
Nautilus, etc.). You can use a graphical file manager, of course, the textual documentation
should be clear enough for that workflow too. Kart commands (identified by the kart prefix)
should of course be run in the terminal.

In the Working with Kart (Section 3.5) section, we will instead use the graphical plugin for
QGIS but, when possible, corresponding terminal commands will be given. If you are unsure
about some commands, the kart command reference is an excellent documentation, other-
wise man pages are available for individual commands using kart COMMAND --help, e.g. kart
status --help.

While Kart can also be used to version raster data, this tutorial will only cover the vector
dataset usage.

1

https://docs.kartproject.org/en/latest/pages/command_reference.html
https://docs.kartproject.org/en/latest/pages/raster_datasets.html

We use Github here as our git forge and we will usually mention it throughout the text.
However, it is completely possible to reproduce this tutorial on other forges such as Gitlab or
Codeberg. When possible we will mention guides for those forges as well.

While this tutorial is focused on QGIS, editing with ArcGIS/GDAL, etc. is supported by kart,
although you will not have access to the graphical plugin.

Note

We noticed some difficulties in getting kart to work properly on older versions of macOS,
likely because of outdated versions of git, xcode, xcode command line tools, etc. For
a smoother experience we recommend using AT LEAST macOS 12 (Monterey) and
XCode 13.
On Linux, if you are running the Flatpak version of QGIS, the kart plugin (see below)
might have problems finding the kart binary. Switching to a different version of QGIS
(e.g. following these instructions) seems to solve the issue, otherwise you might need to
see if the issue can be solved using some apps such as Flatseal.

Note

While this tutorial is presented here in a stable state, it is by no means finalized, we will
keep adding and correcting things based on our continuing experience with kart and the
evolution of kart itself.

1.1 Requirements

To avoid an endless guide, the instructions and tutorial below assumes the following:

• You are familiar with git and you have git installed on your machine (there are many
guides available online, for example de1v.to, or Atlassian, or this other one). If you don’t
have git installed, please follow the instruction on the Git website.

• You have at least one authenticated profile for Github (see https://docs.github.com/en/
get-started/getting-started-with-git) or for your git forge of choice (e.g.).

• You are are familiar or at least not afraid of using a terminal application (e.g. Termi-
nal.app, Powershell, Konsole, Gnome Terminal, Kitty, Wezterm, Alacritty).

• You are familiar with QGIS and its interface, and you have QGIS 3.16 or higher
installed on your machine (otherwise please install it from the QGIS website).

2

https://qgis.org/en/site/forusers/alldownloads.html#debian-ubuntu
https://github.com/tchx84/Flatseal
https://dev.to/jitendrachoudhary/understanding-git-a-beginners-guide-to-version-control-with-visuals-5cbf
https://www.atlassian.com/git
https://rogerdudler.github.io/git-guide/index.html
https://git-scm.com/
https://docs.github.com/en/get-started/getting-started-with-git
https://docs.github.com/en/get-started/getting-started-with-git
https://qgis.org

2 Getting Started

2.1 Install Kart

Go to https://kartproject.org/ and in the dropdown menu under “Download for your OS”
select the appropriate package for your OS. Then, open the file and follow the instruction to
install the software.

Alternatively, platform specific instructions follows below. These instructions are taken from
the kart official documentation, please always double check the source website before running
terminal commands:

Windows

Download the .msi installer from the release page.

macOS

Download the .pkg installer from the release page.

Or use Homebrew to install: brew install koordinates/kart/kart --cask

Linux

For Debian/Ubuntu-based distributions, download the .deb package from the release page and
install via dpkg -i kart_*.deb

For RPM-based distributions, download the .rpm package from the release page and install
via rpm -i kart-*.rpm

Testing install

Test your install by running kart --version in your terminal. If you want, you can follow
the Quick Start guide in kart documentation and running kart status at one point.

3 Getting Started with Kart

3.1 Set up

If you have never used git you should run the following commands (replacing the quoted
text with your actual information):

kart config --global user.email "you@example.com"

kart config --global user.name "Your Name"

3

https://kartproject.org/
https://docs.kartproject.org/en/latest/pages/quick_guide.html#installing
https://github.com/koordinates/kart/releases
https://github.com/koordinates/kart/releases
https://github.com/koordinates/kart/releases
https://github.com/koordinates/kart/releases
https://docs.kartproject.org/en/latest/pages/quick_guide.html#create-a-new-repository-import-dataset

To understand what the above do, you can take a look at the Getting Started with Git guide
from the Github Docs, specifically the parts about Setting up your username and your commit
email address.

If you have already used git, chances are you have the above already set-up, and you can
continue on.

Create an empty folder where your kart projects will live and move into it:

mkdir kart-workflow && cd kart-workflow

As with git, there are different ways in which to get started with kart. Here we will take a
look at the most likely (in our opinion) cases:

1. We have already existing data and we want to start versioning from scratch.

2. We have versioned data already existing on a remote repository and we want to import
those data on our machine.

3.2 A word about HTTPS and SSH

HTTPS connection to github and usually other forges requires additional steps to avoid having
git prompting you with a username and password request every time you interact with the
server. This is usually solved by setting-up a Personal Access Token or by caching your
credentials in Git. Note that failing to cache or save the credentials on your machine in some
ways may result in an error when pushing to a remote repository from the QGIS interface.

For a more seamsless experience (in our opinion), you can follow this guide to setup an SSH
key pair for Github, but guides are also available for Gitlab and Codeberg.

3.2.1 Generating SSH keys (Optional)

The guides above for creating and adding an SSH key should be exhaustive enough, but we can
repeat some steps here. These steps below are general but have been reproduced on MacOS
only.

Important

If you have no previous experience, follow the guide above, these steps are not meant to
replace it.

1. Generate a new ssh key ssh-keygen -t ed25519 -C "your_email@example.com" (the
mail should be the same used for your github account) and follow the on-screen instruc-
tions for inputting a passphrase.

4

https://docs.github.com/en/get-started/getting-started-with-git/set-up-git#setting-up-git
https://docs.github.com/en/get-started/getting-started-with-git/setting-your-username-in-git
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-email-preferences/setting-your-commit-email-address
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-email-preferences/setting-your-commit-email-address
https://docs.github.com/en/get-started/getting-started-with-git/why-is-git-always-asking-for-my-password
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/get-started/getting-started-with-git/caching-your-github-credentials-in-git
https://docs.github.com/en/get-started/getting-started-with-git/caching-your-github-credentials-in-git
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.gitlab.com/ee/user/ssh.html
https://docs.codeberg.org/security/ssh-key/

2. Ensure the ssh-agent is running eval "$(ssh-agent -s)"

3. If you are on macOS 10.12.2 or later, manually edit the ~/.ssh/config file as explained
in the same guide.

4. Add the ssh key to the ssh-agent ssh-add ~/.ssh/id_ed25519 (if you are on
macOS, you can store the ssh passphrase in your keychain by running ssh-add
--apple-use-keychain ~/.ssh/id_ed25519)

5. Add the key to your github account following the respective guide.

3.3 Example 1: use an empty Kart repository

3.3.1 Download data

Download the sample data. You can download this file anywhere on your machine.

You can get the data from the same folder where this tutorial lives, by going to this link.

Alternatively, you can use the following CLI tools by pasting the commands in your terminal
(Aria2 is likely not installed in your system).

Wget

wget https://github.com/UnitoAssyrianGovernance/kart4arch/raw/main/static/kart-workflow-example.gpkg

Aria2

aria2c https://github.com/UnitoAssyrianGovernance/kart4arch/raw/main/static/kart-workflow-example.gpkg

Curl

curl -O https://github.com/UnitoAssyrianGovernance/kart4arch/raw/main/static/kart-workflow-example.gpkg

3.3.2 Import data in Kart

Create an empty folder on your machine and move inside that folder (you can use “kart-
tutorial” or replace it with your own folder name). Be sure to copy the absolute path of where
you saved your geopackage before (the .gpkg extension MUST be included).

kart init kart-tutorial --import GPKG:path/to/your/geopackage.gpkg

5

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=mac#adding-your-ssh-key-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://github.com/UnitoAssyrianGovernance/kart4arch/raw/main/static/kart-workflow-example.gpkg

For example, if you created the kart-workflow folder in the above steps, and you are on
MacOS, your command will look like (run inside the kart-workflow folder):

kart init kart-tutorial --import GPKG:kart-workflow-example.gpkg

The terminal should output something like this (cut for convenience, your output will be
longer)

Initialized empty Git repository in path/to/kart-workflow/kart-tutorial/.kart/
Starting git-fast-import...
Importing 4 features from kart-workflow-example.gpkg:archaeo_locationquality to archaeo_locationquality/ ...
Added 4 Features to index in 0.0s
Overall rate: 1390 features/s)
Closed in 0s
Importing 106 features from kart-workflow-example.gpkg:archaeo_periodisation to archaeo_periodisation/ ...
Added 106 Features to index in 0.0s
Overall rate: 21077 features/s)
Closed in 0s
[...]
Creating GPKG working copy at kart-tutorial.gpkg ...
Writing features for dataset 1 of 12: archaeo_status
archaeo_status: 100%|���| 8/8 [00:00<00:00, 11679.23F/s]
[...]

3.4 Example 2: Clone an existing Kart repository

Do not use standard git commands (git clone) or Github CLI (gh repo clone) or any
other similar commands or CLI tools to clone the repository, as this will not work as intended.
Use only the kart clone command.

3.4.1 Clone the repository

We provide a versioned github repo ready to clone.

3.4.1.1 Cloning with HTTPS

kart clone https://github.com/UnitoAssyrianGovernance/kart-tutorial.git

6

https://github.com/UnitoAssyrianGovernance/kart-tutorial-dataset

Tip

You can use your own folder name instead of the default “kart-tutorial”
by adding a name at the end of the command, e.g. kart clone
https://github.com/UnitoAssyrianGovernance/kart-tutorial.git kartproject

3.4.1.2 Cloning with SSH

kart clone git@github.com:UnitoAssyrianGovernance/kart-tutorial.git

3.5 Working with Kart

Run kart status , if you see something like

On branch main

Nothing to commit, working copy clean

you are good to go, the repository has been correctly initialized or cloned. If not, please repeat
the above steps carefully.

3.5.1 Install the Kart QGIS Plugin

Kart comes with a useful plugin for QGIS. The source code for this plugin is available on
Github. To install the latest version of the plugin, use the QGIS Plugin Manager and search
for the Kart plugin. Alternatively, you can get the latest version from the release page, then
open the QGIS Plugin manager and install the downloaded zip file.

As long as you have kart installed, the plugin can also take care of creating a new repo,
cloning an existing one (i.e. the steps we did above), etc. The plugin has an excellent
documentation with substantial graphical examples, so we link to the official docs
instead of rewriting our own.

3.5.2 Set up the plugin

Not much setup is needed, the plugin should identify the kart binary automatically. If not, go
to Plugins > Kart > Settings menu to open the settings dialog. In the Kart executable folder
field, enter the path to your Kart executable. If the Kart folder is not configured, the Kart
plugin will use the default install locations, as follows:

7

https://github.com/koordinates/kart-qgis-plugin
https://github.com/koordinates/kart-qgis-plugin/releases/latest
https://github.com/koordinates/kart-qgis-plugin/blob/main/docs/index.md

• Windows: %PROGRAMFILES%\Kart\

• OSX: /Applications/Kart.app/Contents/MacOS/

• Linux: /opt/kart/

We also recommend toggling off the option “Commit automatically after closing editing”. De-
pending on your editing workflow, you might end up with hundreds of commits adding one
point each without realizing. Of course, this means that you will have to remember
to commit your edits manually.

When changes have been done, close the plugin dialog box with “Ok”.

3.5.3 Connect to a local repository

If a side panel has not already appeared, click on Plugins > Kart > Repositories to open the
kart panel. The panel will look empty, but we will populate it with the repository we created
before.

8

In order to do so, right click on “Repositories”. You will see a list of options: the last two
(Create new repository and Clone repository) are graphical replacement to the steps we did
before (Section 3.3 and Section 3.4).

Click on Add existing repository… and navigate to the kart-workflow folder we created before,
then click on “Open”.

9

You will see the repository path now listed inside the panel under the name path/kart-workflow/kart-tutorial
[main]. The [main] bit indicates the branch on which we are working (just as the git branches,
more on this on the kart documentation and below in Section 3.6.1).

10

https://docs.kartproject.org/en/latest/pages/quick_guide.html#branching

Tip

For more information on the data, see the Appendix or our wiki section.

3.5.4 Load data inside the project

What you connected to is what kart calls working copy, i.e. a file living on your computer that
you can interact with through GIS. Kart uses different working copy types, in our case the
Geopackage working copy.

To add the layers to our QGIS project, expand the repository tree by clicking on the arrow
button on the left in the kart panel. Right-click on the archaeo_sites layer and click on
Add to QGIS Project. A point layer should appear on the map and the CRS should change
to EPSG:32636. Add also all the other layers (you should have 10 tabular layer and another
1 geometry layer. Add all of them except the layer_styles layer. These table layer are
background data useful for populating records in the main layer (archaeo_sites) through QGIS
value relation widgets.

11

https://github.com/UnitoAssyrianGovernance/.github/wiki/GIS-Vector-Data#main-layer-table-structure
https://docs.kartproject.org/en/latest/pages/quick_guide.html#workflow
https://docs.kartproject.org/en/latest/pages/wc_types.html
https://docs.kartproject.org/en/latest/pages/wc_types/gpkg_wc.html
https://docs.qgis.org/3.34/en/docs/user_manual/working_with_vector/vector_properties.html#edit-widgets
https://docs.qgis.org/3.34/en/docs/user_manual/working_with_vector/vector_properties.html#edit-widgets

3.5.5 Add new geometry to existing layers

You can now proceed to add new data as you would do normally in QGIS. Toggle the editing
for the archaeo_sites layer and click on the Add Point Feature button. Click anywhere and
add a new point. Fill the attribute table however you like. The tab structure you will see in
the new feature prompt is thank to QGIS attribute form feature, and because the style of the
layer is saved inside the geopackage, and versioned in kart as well (this was the layer_styles
layer present in the repository listing in the kart panel.

12

https://docs.qgis.org/3.34/en/docs/user_manual/working_with_vector/vector_properties.html#attributes-form-properties

Save the edits by either closing the editing tool or clicking on the Save Layer Edits button.

3.5.6 Edit an existing geometry

Let’s edit an existing point now, for example by changing its position and modifying some
attributes. Use the identify features tool to quickly access the attribute table of a point of
your choice, and right click on the identify panel to bring up a contextual menu. From this
menu select Edit Feature Form. Edit the attribute table, e.g. changing the site type or the
periodization, and saving your edits.

13

https://docs.qgis.org/3.34/en/docs/user_manual/introduction/general_tools.html#identify

14

Now let’s also change the location of one of the points. It can either be the same one or
another, but for an easier visualization later, it might be best to edit points near the one we
added before. Use the move feature tool to do it and move a point a bit further from its actual
location, saving the edits after.

15

3.5.7 Inspect working copy changes

One of the interesting aspects of Kart is the possibility of inspecting changes before commits.
The QGIS plugin in particular offers a way of graphically visualize changes, both on a 2D
map or in a table layout. To do so, return to the kart repository panel and right-click on
the repository name, then click on the Show working copy changes… button (you can also
right-click on a single layer to inspect changes only for that one).

16

The visual diff viewer panel will open. On the left we can see (in a tree-like structure) the layer
that was edited (archaeo_sites, there would be more if we had edited more than one layer),
the type of change (Added, Modified)m and the primary key of the added/modified entry. On
the right, there are two types of diffs available, the Attributes table, and the Geometries tab.
For the Added feature, the attribute table will be all green (as these are all new entries), and
the geometry tab will not be much useful. However, if we switch to the Modified features,
we can see that kart highlights the rows that have been modified in a convenient table with
Old/New value pairs.

17

If we switch to the Geometries tab instead, and select the point that we have moved from the
list on the left, then we will see how Kart highlights with transparency the previous location
of the geometry/nodes and in a darker color the new location.

On the top of the Geometries tab, there are also two dropdown dialogs, one (Additional Layers)
related to the layer we want to show in the Diff Viewer in addition to the modified geometries
(options are: Project Layer, OSM Basemap, No additional layers), and another (Diff type)
related to how we want to visualize the Diff (options are: Transparency, Swipe, Per-vertex
diff). We found both transparency and per-vertex diff to be particularly useful in case of
polygon geometries.

18

Note that the kart CLI also offers a way to inspect changes to the working copy, through the
kart status and kart diff commands. For example, for the edits that we just made the
output would be something similar:

19

https://docs.kartproject.org/en/latest/pages/basic_usage_tutorial.html#making-and-committing-changes

Expand

20

kart status
On branch main

Changes in working copy:
(use "kart commit" to commit)
(use "kart restore" to discard changes)

archaeo_sites:
feature:
1 inserts
1 updates

kart diff
--- archaeo_sites:feature:914
+++ archaeo_sites:feature:914
- Type = Settlement
+ Type = Fortified Settlement
- Morphology = Flat site on natural mound
+ Morphology = Mound/Tell
- Period = Roman-Byzantine
+ Period = Hellenistic
- StartDate = -63
+ StartDate = -332
- EndDate = 638
+ EndDate = -63
+++ archaeo_sites:feature:1103
+ fid = 1103
+ geometry = POINT(...)
+ Name = A new point
+ NameAlt = �
+ AncientName = �
+ Type = Settlement
+ Morphology = Flat site
+ Period = Hellenistic
+ StartDate = -332
+ EndDate = -63
+ ArchaeoStatus = Surveyed
+ Latitude = �
+ Longitude = �
+ Northing = �
+ Easting = �
+ LocQual = A
+ SizeHa = �
+ SizeQual = C
+ SiteHeight = �
+ Source = Archaeological Survey of Israel
+ Pages = �
+ Notes = �
+ Subtype = {"hamlet"}
+ AltSource = �
+ AltSourcePages = �
+ AltSourceID = �
+ AltSizeHa = �
+ AltSizeQual = �
+ SourceID = 1kart status

21

3.5.8 Commit working copy changes

Now that we inspected the changes made during editing, we can commit them, just like git.
In QGIS, go back to the kart repositories panel and right-click on our repository, then select
Commit working copy changes… (you can also discard them if you noticed some errors). A
dialog will pop-up prompting you to enter a commit message. Write a descriptive commit
message and then click on “Ok”. A green message at the top should inform you that the
changes have been committed successfully (Changes correctly commited).

You can achieve the same by using the CLI through the command kart commit (relevant
documentation).

kart commit -m 'YOUR COMMIT MESSAGE'
[main be39e89] your commit message
archaeo_sites:

feature:
1 inserts
2 updates

Date: Wed Apr 10 16:40:04 2024 +0200

22

https://docs.kartproject.org/en/latest/pages/command_reference.html#commit-changes-to-a-working-copy
https://docs.kartproject.org/en/latest/pages/command_reference.html#commit-changes-to-a-working-copy

Before proceeding

Add a couple more points or modify existing ones, and make at least other two-three
commits, by repeating the same steps above. You can also edit different layers, such has
the table layers, or the survey_areas layers.

3.5.9 Inspect the commit tree

Now that we have more than just a couple of commits, we can use the visual log to inspect
commits to our main branch. To access the log, right-click on our repository in the kart panel
and click on Show log…

The log panel will appear (if you have worked with VSCode or any other editor providing
a git-tree functionality, this will look very familiar). For now it will look rather simple as
we are directly committing on a single branch and we have few commits. The corresponding
command for the CLI is kart log (note: if you are using pagers for git, these will not work
with kart of course)

23

3.5.10 Inspect changes introduced in a specific commit (and other options)

In the QGIS plugin, we can inspect, using the Visual Diff tool, changes introduced by each
commit we made. We can bring up a contextual menu by right-clicking on a commit, and a
number of options will show. We will not inspect all the options visible in the image below,
but they should be self-explanatory, especially if you are familiar with git.

24

3.6 Collaborating with Kart

While kart is perfectly usable on a local machine only, the goal here is to collaborate with other
people. In our workflow, every person can make edits to the layers that need to be worked
on. Git is, in general, a very good collaboration tool, and thus kart potentially offers similar
advantages. We will explore a very simple worklow: we will simulate one colleague creating
a secondary branch from main, adds the edits needed, and then merge back into main, where
another colleague have already added geometries to the same layers. Since we are using a
geopackage, we will have to deal with conflicts, so we will explore that too.

Warning

Here we are using the main branch as an example to avoid too much redundancy, but
this is usually not a good practice, as usually is best to have everyone working on
secondary branches. As suggested in this comment, it is recommended that one user
will do the merge, push the changes, and any other user will use the merged branch as
starting point for any new edits in order to avoid further conflicts. This means that after

25

https://github.com/koordinates/kart/issues/814#issuecomment-1498167436

the merge into main is completed and the updated main has been pushed to remote, new
edits should be done on new branches created from the updated main branch
(after updating the local main branch with kart pull).

3.6.1 Branching

Branching is a common way to implement features and changes isolated from the main working
tree and from other people working on the same dataset. The main branch is the default branch
upon repository creation.

In order to create a new branch, you can use the graphical plugin by right-clicking on the
repository name and then click on Switch branch.. On the the new dialog click on Create New.
In the new dialog pop-up select the name of the new branch (e.g. dev) and then click on OK.

26

You can reproduce the exact same behavior with less clicks using the following command in
your terminal when in the kart repo: kart checkout -b dev.

Your worktree will switch to the new branch automatically. If you need to switch back to main
again, from the plugin panel use the same Switch branch.. option and select main from the
dropdown menu. From the CLI you can use kart switch main or kart checkout main.

If you use the CLI, the changes should be immediately visible in the plugin panel in QGIS,
if that’s not the case, you can refresh using F5 or by right-clicking on the repo and click
Refresh.

You can also see the two branches (at the same point in the kart tree) using the Show log..
button from the kart repo panel.

For more general information about branches: see the Kart QGIS Plugin docs and
the Kart docs and command reference.

3.6.1.1 Add features on the new branch

Let’s now add 3 new points to the archaeo_sites layer while on the dev branch. The procedure
is the same as the one highlighted in the previous sections (Section 3.5.5). Let’s also commit

27

https://github.com/koordinates/kart-qgis-plugin/blob/main/docs/index.md#working-with-branches
https://docs.kartproject.org/en/latest/pages/quick_guide.html#branching
https://docs.kartproject.org/en/latest/pages/command_reference.html#branching-and-merging

this changes and inspect the worktree to see that the dev branch is now ahead of main by 1
commit.

3.6.1.2 Add features to the main branch

To simulate a collaborative situation, switch back to the main branch (using the plugin interface
of kart switch) and add 2 points to the same archaeo_sites layer and commit our changes.

3.6.2 Merging

We want our changes on the dev branch to be incorporated on the main branch. To do this
we can use the graphical plugin to start a merge. While on the main branch, right-click on
the repository and select Merge into current branch.. In the new panel you can provide a
merge message and select other options, but for now let’s just make sure to select dev from
the dropdown corresponding to Branch.

You can do the same in the terminal by using kart merge dev, make sure you are on the
main branch.

If there are no conflicts, kart will merge using the fast-forward option(thus we will not find a
“merge” commit in your commit history) and our branch main will be updated with the edits
from the other branch. However, this is not the case now.

If you did like we did above, you will likely see a message telling you that there were conflicts
during the merge, and that these conflicts need to be resolved before continuing with the
merge.

28

If you use the command line, you will receive a similar message:

kart merge dev

Merging branch "dev" into main
Conflicts found:

archaeo_sites:
archaeo_sites:feature: 2 conflicts

Repository is now in "merging" state.
View conflicts with `kart conflicts` and resolve them with `kart resolve`.
Once no conflicts remain, complete this merge with `kart merge --continue`.
Or use `kart merge --abort` to return to the previous state.

3.6.3 Dealing with conflicts

When conflicts are encountered, the repository enters into a merging state. In this state no
changes can be made to the dataset until the conflicts are resolved. Three options are available
to us:

1. Solve the conflicts
2. Continue merge (this will not work until conflicts are solved)
3. Abort the merge (return to the previous state before the merge command)

We want to solve our conflicts. When working with geopackages, the most likely conflict comes
from conflicting primary keys (in the fid field).

29

3.6.3.1 Viewing conflicts

To solve our conflicts we need first to see what is actually conflicting. With the QGIS plugin,
right click on the repository and select Resolve conflicts…

Note

Currently we are unable to access the graphical tool due to a possible bug in kart, thus
we will continue with the CLI only. We will update this tutorial with the relevant info
once we get past this issue. If you don’t want to use the CLI, you can try following the
kart plugin docs about solving conflicts and then continue on to the next section.

To see the conflicts on the CLI, use kart conflicts to generate a list of conflicting features.
While not immediately noticeable, you will see that each feature has a :ours or :theirs after
its name, indicating at which branch they pertain, ours meaning the branch you are currently
on, and theirs meaning the branch you are mergin from. In our case, ours is main and theirs
is yourbranchname (or how your feature branch is called). This view does not really tell you
which fields are conflicting, but if you look at the fid you will see that they are duplicated.

30

https://github.com/koordinates/kart-qgis-plugin/blob/main/docs/index.md#working-with-branches

Expand

31

kart conflicts
archaeo_sites:

archaeo_sites:feature:
archaeo_sites:feature:1106:

archaeo_sites:feature:1106:ours:
fid = 1106

geometry = POINT(...)
Name = A site on main branch

NameAlt = �
AncientName = �

Type = Building
Morphology = Flat site

Period = Roman
StartDate = -63
EndDate = 324

ArchaeoStatus = Surveyed
Latitude = �
Longitude = �
Northing = �
Easting = �
LocQual = A
SizeHa = �

SizeQual = C
SiteHeight = �

Source = kart4arch2024
Pages = �
Notes = �

Subtype = {"farm"}
AltSource = �

AltSourcePages = �
AltSourceID = �

AltSizeHa = �
AltSizeQual = �

SourceID = 3
archaeo_sites:feature:1106:theirs:

fid = 1106
geometry = POINT(...)

Name = A first site on dev
NameAlt = �

AncientName = �
Type = Settlement

Morphology = Flat site
Period = Late Bronze Age

StartDate = -1550
EndDate = -1150

ArchaeoStatus = Surveyed
Latitude = �
Longitude = �
Northing = �
Easting = �
LocQual = A
SizeHa = �

SizeQual = C
SiteHeight = �

Source = kart4arch2024
Pages = �
Notes = �

Subtype = {"farm"}
AltSource = �

AltSourcePages = �
AltSourceID = �

AltSizeHa = �
AltSizeQual = �

SourceID = 5
archaeo_sites:feature:1107:

archaeo_sites:feature:1107:ours:
fid = 1107

geometry = POINT(...)
Name = Another site on main branch

NameAlt = �
AncientName = �

Type = Settlement
Morphology = Flat site on natural mound

Period = Byzantine
StartDate = 324
EndDate = 638

ArchaeoStatus = Surveyed
Latitude = �
Longitude = �
Northing = �
Easting = �
LocQual = A
SizeHa = �

SizeQual = C
SiteHeight = �

Source = kart4arch2024
Pages = �
Notes = �

Subtype = {"hamlet"}
AltSource = �

AltSourcePages = �
AltSourceID = �

AltSizeHa = �
AltSizeQual = �

SourceID = 4
archaeo_sites:feature:1107:theirs:

fid = 1107
geometry = POINT(...)

Name = A second site on dev
NameAlt = �

AncientName = �
Type = Fortified Settlement

Morphology = Mound/Tell
Period = Iron Age II

StartDate = -950
EndDate = -586

ArchaeoStatus = Surveyed
Latitude = �
Longitude = �
Northing = �
Easting = �
LocQual = A
SizeHa = �

SizeQual = C
SiteHeight = �

Source = kart4arch2024
Pages = �
Notes = �

Subtype = {"fortification"}
AltSource = �

AltSourcePages = �
AltSourceID = �

AltSizeHa = �
AltSizeQual = �

SourceID = 6

32

3.6.3.2 Solving conflicts

We need now to resolve the conflicts. In git you will be thrown in the text editor, but kart lets us
choose the way in which to resolve it. However, the way indicated on the official documentation
(kart revolve --with=(ancestors|ours|theirs|delete)) does not include, at the time of
writing (2023-12-06) the most suitable option, i.e. automatically renumbering the features.
This is instead only documented on a pull request, so we report it here too (note that however
the option is visible in the man page using kart resolve --help).

Since Kart version 0.12.3, there is a kart revolve --renumber=(ours|theirs) command
that is intended to automatically resolve primary key conflicts during merge operations. The
--renumber flag takes one of the two options: ours or theirs, with ours meaning the branch
we are currently on, and theirs meaning the branch we are merging from.

Let’s use kart resolve --renumber=theirs or ours by typing the command in our termi-
nal.

We suggest using theirs as to preserve the order of features originally present in the main
branch, but feel free to use ours if you prefer (see below).

Caution

If there is only a partial overlapping of primary keys, kart will merge those keys that can
be merged, while the other features will wait for the conflict resolution to be renumbered.
This means that if you have some keys in the yourbranchname branch that do not overlap
with primary keys in your main branch, and you use theirs as an option for renumbering,
these primary keys will be added first after the keys already present in main (as mentioned
here). This will break the sequential order of features from the secondary branch, however,
it is more of a visual issue than a real one, unless you are relying on the order of those
primary keys for other operations.

After running the command, you should see something like this:

kart resolve --renumber=theirs
Resolved 2 conflicts. 0 conflicts to go.
Use `kart merge --continue` to complete the merge

As adivides by the CLI, let’s run kart merge --continue to finish the merge (this can be
done also in the graphical plugin).

3.6.3.2.1 A note about terminal text editors

By default, you will be prompted to insert a commit message inside a terminal text editor.
Which text editor this will be is dependent on your machine, OS, and configuration. If you

33

https://docs.kartproject.org/en/latest/pages/command_reference.html#resolving-a-conflict
https://github.com/koordinates/kart/pull/817
https://github.com/koordinates/kart/releases/tag/v0.12.3
https://github.com/koordinates/kart/pull/817

have set the $VISUAL or $EDITOR variables in your shell, then you will know what will be
opened. If not, you will either be put inside nano/emacs or vi/vim.

With some possible differences, the interface will be like this for vi/vim

Figure 1: vi/vim interface

34

And like this for nano/emacs:

Figure 2: nano/emacs interface

You will already have a commit message written for you, something like Merge branch "dev"
into main. You can edit the message (see below) or accept the defaul by using ctrl+x in
nano/emacs or :wq in vi/vim.

To edit the message in nano, start typing at the top of the top of the file. When you are
finished, the menu at the bottom should tell you how to quit and save. Press ctrl+x (the ^
means ctrl) to exit. When asked to save the buffer, press y to confirm.

To edit the message in vi/vim, press i to be able to type (this might not be necessary). Type
the commit message and when satisfied press :q to exit (typing :q! will exit without saving
the file).

The text editor will close and the terminal will output the details of the commit and the date,
plus some other info.

If everything went well you will see a message like this:

Merging branch "dev" into main
No conflicts!
Merge committed as 890e2455fe81f0e58c5c5bed8cb7010e4fb174f8
Updating kart-tutorial.gpkg ..

35

And your repo will be available to edit again. Check the features and you will see that the
main branch now includes also the ones from dev.

You can inspect the worktree to see how the branches diverged and how the merge commit
was created.

See also Kart QGIS plugin docs and Kart docs on resolving conflicts and ourWiki
on the same topic. A useful github issue about solving conflicts in multi-user
scenario.

3.6.3.3 Delete branches

Now that we have merged the features, we can safely delete the dev branch to clean our kart
repository. To our knowledge this option is still not available through the graphical plugin.

Note

You cannot delete the branch you are currently on, so you will need to switch to another
branch in order to delete it.

To delete a branch you can use this command kart branch -d dev (the d flag stands for
delete).

You should see a confirmation message:

Deleted branch dev (was ba24402).

And you can confirm there is only one branch by running kart branch -v in the terminal:

kart branch -a
* main

36

https://github.com/koordinates/kart-qgis-plugin/blob/main/docs/index.md#working-with-branches
https://docs.kartproject.org/en/latest/pages/command_reference.html#resolving-conflicts
https://github.com/UnitoAssyrianGovernance/.github/wiki/GIS-Vector-Data#dealing-with-conflicts
https://github.com/UnitoAssyrianGovernance/.github/wiki/GIS-Vector-Data#dealing-with-conflicts
https://github.com/koordinates/kart/issues/814

Important

If you do not delete you development branch, remember to start new works by creating
new branches from the main one, otherwise your might branch from outdated dataset!

3.6.4 Push changes to a remote repository

Let’s say you are finishing your work and you want to backup your data outside of your
machine, or you need to collaborate remotely with other people, thus you need to use

3.6.4.1 Connect to a remote repository

Check that the repository has no remotes with kart remotes -v.

If you cloned the repository in the initial steps (Section 3.4), you might see some remotes (if
you don’t, skip this part):

kart remote -v
origin https://github.com/UnitoAssyrianGovernance/kart-tutorial.git (fetch)
origin https://github.com/UnitoAssyrianGovernance/kart-tutorial.git (push)

You will not be able to make push to these remotes, but to avoid confusion remove these
remotes from kart using the following: kart remote rm origin (don’t worry, this will not
impact the repository), and confirm again you have no more remotes using kart remotes
-v.

3.6.4.1.1 Create a remote repository

Create a remote repository on your forge of choice, in our case Github, by following the
respective instructions.

Warning

As a general rule of thumb, if you are creating a repository from one online forges,
remember to NOT include any README.md, .gitignore, or other files. Best-case scenario
they will be ignored by kart, but worst-case they might break your workflow, as kart will
recognize an out-of-sync remote with no real means of fixing it.

37

https://docs.github.com/en/repositories/creating-and-managing-repositories/creating-a-new-repository

38

3.6.4.1.2 Connect with the kart QGIS plugin

To connect to a remote repository through a graphical interface, right-click on the repository
panel and click on Push..

In the new dialog, click on Manage remotes.

39

In the new dialog, give a name to the Remote (e.g. github or origin) and the URL
you will see after creating the new repository in the previous steps. This URL will be
something like https://github.com/yourusername/kart-tutorial.git for HTTPS and
git@github.com:``yourusername``/kart-tutorial.git for SSH (see above for HTTPS
and SSH in Section 3.2). After adding this information, click on Add New/Save and then on
Ok to close the dialog.

40

You will be back in the previous panel with the chosen remote added in the dropdown (you
can add more than one!).

3.6.4.1.3 Connect with the kart CLI

To add a remote using the CLI, you can use kart remote add origin URL, replacing the URL
with the ones mentioned above. Check if the remotes have been added using kart remotes
-v once again, you should see two entries with your URL, one for fetch and one for push.

Note

origin is a convention, you can name your remote however you want, just make sure to
use the name you choose in the next commands.

3.6.4.2 Push changes

If you are using the graphical plugin, in the Push panel, click Ok. A green message should
tell you that the push was successful. If you encounter en error saying that the device is not
configured, it is likely an HTTPS authentication issue. You have some options:

1. Make sure you are authenticated to github and that git has your credentials stored
globally.

2. Use the CLI
3. Use SSH (which should be more reliable)

Unfortunately the reason for an error might be a lot, if you encounter some reach
out to us and we will help as much as we can :)

If you are using the CLI, run kart push -u origin main (origin is the name of the
remote, change it accordingly). If you have not set your credentials before, you will be
asked for your forge username and token. If not, you will be able to push and you should see
something like this in your terminal:

kart push -u origin main

Enumerating objects: 892, done.
Counting objects: 100% (892/892), done.
Writing objects: 100% (892/892), 226.96 KiB | 113.48 MiB/s, done.
Total 892 (delta 0), reused 892 (delta 0), pack-reused 0
To https://github.com/yourusername/kart-tutorial.git
* [new branch] main -> main
branch 'main' set up to track 'origin/main'.

41

Congratulations! your changes have been pushed to a remote repo and are accessible to your
collaborators if needed!

Note

In the same way, if you know that your remote has more recent changes that your local
machine, you can use kart pull or the respective button in the kart plugin to pull
changes from remote.
It is always best to pull changes if you are unsure someone made edits before your work!

3.6.4.3 Addendum: Interact with remote branches

3.6.4.3.1 Push new branches to remote

When using remote repository and different branches, is likely that you will be pushing this
branches to the remote repository. Here we will explain how to interact with them. We will
provide only terminal commands for simplicity, but you can refer to the previous sections to
replicate this with the graphical plugin.

Let’s create a new branch from main by using kart checkout -b feature.

To make the new branch appear on the remote repository, use the push command again: kart
push -u origin feature. You will see something like this:

kart push -u origin feature

Total 0 (delta 0), reused 0 (delta 0), pack-reused 0
remote:
remote: Create a pull request for 'feature' on GitHub by visiting:
remote: https://github.com/yourusername/kart-tutorial/pull/new/feature
remote:
To https://github.com/yourusername/kart-tutorial.git
* [new branch] feature -> feature
branch 'feature' set up to track 'origin/feature'.

Now you can work on your new branch, push to remote and continue your work.

3.6.4.3.2 Pull new branches from remote

You can also pull changes made by another person from another branch to you local machine.
To simulate this, let’s head to your forge of choice (in our case github) and create a new

42

branch from the web interface (most forges should have a way to do that, see e.g. the docs for
github).

Create a new branch from Github, using our main branch as source (we can call it
remote-branch or anything else you want).

After that, you can use kart pull to pull information from the remote repository, you should
see something like this:

kart pull

* [new branch] remote-branch -> origin/remote-branch
Merging 890e245 into feature
Already up to date

And running kart branch -a confirm that everything has been updated correctly:

kart branch -a

* feature
main

43

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-and-deleting-branches-within-your-repository
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-and-deleting-branches-within-your-repository

remotes/origin/feature
remotes/origin/main
remotes/origin/remote-branch

You can see from the above that the remote-branch is only existing on the remote repository,
not in your machine (there are two entries for any branch except this one). If you want to
work on this branch, you can simply run kart switch remote-branch, and the new branch
will be automatically linked to the remote one.

kart switch remote-branch

Creating new branch 'remote-branch' to track 'origin/remote-branch'...

3.6.4.3.3 Delete local and remote branches

If you want to delete a local branch that you already pushed on remote, you need some few
additional steps.

1. Delete your local development branch with kart branch -d remote-branch, replacing
remote-branch with the actual name of your branch. Note that you cannot delete the
branch you are currently on, so you will need to switch to another branch in order to
delete it.

2. Use kart push origin --delete remote-branch, replacing remote-branch with the
actual name of your development branch.

3. If you deleted the branch on the remote forge/github before deleting it locally on your
machine, the previous command will fail. You will need to update the remote information
locally using kart fetch --prune, which will usually tell you that the remote branch
is deleted. Then you can proceed to delete the local branch as in the step 1.

kart branch -d remote-branch

Deleted branch remote-branch (was 890e245).

kart push origin --delete remote-branch

To https://github.com/yourusername/kart-tutorial.git
- [deleted] remote-branch

You can go on your forge to see that the changes have been reflected over there too.

44

4 Tips

4.1 Selective import tables

4.2 Rename data on import

4.3 Create data from QGIS and start version them with kart

In QGIS, new layers can be safely added to the kart geopackage using the New Geopackage
Layer button. However, this layer will not be automatically tracked by kart, which needs to
be told manually about their existence:

Since version 0.12.3 (2023-04-26) kart provides the command kart add-dataset. This com-
mand tells kart to track layers that are present in the geopackage, but that were not imported
through kart import. This command is mentioned in a github issue, but it is not documented
yet in the official documentation at the time of writing (2024-04-01), thus we put here a quick
reference to document its existence.

The workflow for creating and start versioning new layers in kart is as follows:

1. Create a new geopackage layer, either from scratch using the “New Geopackage Layer”
dialog, or through the “Save as..” option if you have an existing layer already in your
project.

2. Open the terminal (the add-dataset is still not implemented in the kart qgis plugin)
and navigate to the directory where your kart geopackage is located.

3. Check if the layer is indeed present inside the geopackage by running kart status
--list-untracked-tables. You should get something along the lines of:
On branch main
Your branch is up to date with 'origin/main'.

Nothing to commit, working copy clean

Untracked tables:
THE UNTRACKED LAYERS

NB: if you don’t see any untracked layers, make sure you created/saved the layer in the correct
geopackage! NB: kart refers to Vector data as Table Datasets, which is why in the output you
will see “tables” and not “layers” (which is more of a GIS concept).

4. Run kart add-dataset YOUR-LAYER-NAME (by replacing YOUR-LAYER-NAME with
the actual name of the layer), kart will prompt for a commit message before starting to
track the layer.

45

https://github.com/koordinates/kart/issues/830

Note that this also works for the layer styles when saved to the geopackage using the dialog
option “Style -> Save as Default -> Datasource Database” (from the layer properties tab).
Styles saved in this way are usually saved in a layer_styles table inside the geopackage. We
can run kart add-dataset layer_styles to track any changes to the layer styles (check if
the layer exists and if it is indeed untracked first).

4.3.1 A note on the commit message when running kart add-dataset

You will be thrown in your terminal text editor (see Section 3.6.3.2.1 to manage the commit
message).

4.3.2 Addendum - layer styles

Warning

Note that, at the time of writing (2023-11-15), due to a small mishandling of layer_styles
schema by QGIS, if your layer name is longer than 30 characters and your style is named
with the same name as the layer, you will incur into an error when trying to run kart
add-dataset layer_styles. As explained in this issue, this is not a kart bug. We
recommend keeping the layer style name (or the layer names) below 30 characters to
avoid issues.

5 Useful Resources

• Kart website

5.1 Documentation

• Kart documentation

• Kart command reference

• Kart QGIS plugin documentation

46

https://github.com/koordinates/kart/issues/873
https://kartproject.org/
https://docs.kartproject.org/en/latest/index.html
https://docs.kartproject.org/en/latest/pages/command_reference.html
https://github.com/koordinates/kart-qgis-plugin/blob/main/docs/index.md#kart-plugin-user-documentation

5.2 Other resources

5.2.1 Presentations about kart

• Coup, R. (2022a). Kart: An introduction to practical data versioning for geospatial.

• Coup, R. (2022b). Kart: A Practical Tool for Versioning Geospatial Data.

• Coup, R. (2023). 2023 QGIS Data Versioning with Kart.

• Olaya, V. (2022). Spatial data versioning with the Kart QGIS Plugin.

5.2.2 Guides and tutorials about Git

• Understanding Git: A Beginner’s Guide to Version Control (With Visuals)

• Getting Git Right

• Git: the simple guide

• Git Official Documentation with useful resources

• Other tutorials from the Git website

5.2.3 QGIS

• QGIS Website

• QGIS User Guide

• QGIS Training Manual

• A Gentle Introduction to QGIS

47

https://www.youtube.com/watch?v=fAIh6p4rczY
https://www.youtube.com/watch?v=_7ETwmMlUtY
https://www.youtube.com/watch?v=AxOTE2CCY3s
https://www.youtube.com/watch?v=aABc3JrgJUY
https://dev.to/jitendrachoudhary/understanding-git-a-beginners-guide-to-version-control-with-visuals-5cbf
https://www.atlassian.com/git
https://rogerdudler.github.io/git-guide/index.html
https://git-scm.com/doc
https://git-scm.com/doc/ext
https://qgis.org
https://docs.qgis.org/latest/en/docs/user_manual/
https://docs.qgis.org/3.34/en/docs/training_manual/
https://docs.qgis.org/3.34/en/docs/gentle_gis_introduction/

	Foreword
	Requirements

	Getting Started
	Install Kart

	Getting Started with Kart
	Set up
	A word about HTTPS and SSH
	Generating SSH keys (Optional)

	Example 1: use an empty Kart repository
	Download data
	Import data in Kart

	Example 2: Clone an existing Kart repository
	Clone the repository

	Working with Kart
	Install the Kart QGIS Plugin
	Set up the plugin
	Connect to a local repository
	Load data inside the project
	Add new geometry to existing layers
	Edit an existing geometry
	Inspect working copy changes
	Commit working copy changes
	Inspect the commit tree
	Inspect changes introduced in a specific commit (and other options)

	Collaborating with Kart
	Branching
	Merging
	Dealing with conflicts
	Push changes to a remote repository

	Tips
	Selective import tables
	Rename data on import
	Create data from QGIS and start version them with kart
	A note on the commit message when running kart add-dataset
	Addendum - layer styles

	Useful Resources
	Documentation
	Other resources
	Presentations about kart
	Guides and tutorials about Git
	QGIS

